Unlocking the energy capabilities of micron-sized LiFePO4
نویسندگان
چکیده
Utilization of LiFePO4 as a cathode material for Li-ion batteries often requires size nanonization coupled with calcination-based carbon coating to improve its electrochemical performance, which, however, is usually at the expense of tap density and may be environmentally problematic. Here we report the utilization of micron-sized LiFePO4, which has a higher tap density than its nano-sized siblings, by forming a conducting polymer coating on its surface with a greener diazonium chemistry. Specifically, micron-sized LiFePO4 particles have been uniformly coated with a thin polyphenylene film via the spontaneous reaction between LiFePO4 and an aromatic diazonium salt of benzenediazonium tetrafluoroborate. The coated micron-sized LiFePO4, compared with its pristine counterpart, has shown improved electrical conductivity, high rate capability and excellent cyclability when used as a 'carbon additive free' cathode material for rechargeable Li-ion batteries. The bonding mechanism of polyphenylene to LiFePO4/FePO4 has been understood with density functional theory calculations.
منابع مشابه
Phospho-Olivine as Advanced Cathode Material for Lithium Batteries
Nano-sized and micron-sized LiFePO4 electrode materials were prepared by a sol gel and coprecipitation reactions. An improvement of the cycling and rate performances in lithium cells was observed for the carbon coated LiFePO4 materials. The coating process uses a solid/gas-phase reaction which consists of decomposing propylene gas, as carbon source, inside a reactor containing olivine LiFePO4 m...
متن کاملTowards High Capacity Li-ion Batteries Based on Silicon-Graphene Composite Anodes and Sub-micron V-doped LiFePO4 Cathodes
Lithium iron phosphate, LiFePO4 (LFP) has demonstrated promising performance as a cathode material in lithium ion batteries (LIBs), by overcoming the rate performance issues from limited electronic conductivity. Nano-sized vanadium-doped LFP (V-LFP) was synthesized using a continuous hydrothermal process using supercritical water as a reagent. The atomic % of dopant determined the particle shap...
متن کاملSynthesis of Porous and Micro-sized LiFePO4/C by a Two- step Crystallization Process and Its Application to Cathode Material in Li-ion Batteries
LiFePO4 with an ordered olivine structure has been recognized as a promising cathode material for advanced Li-ion batteries due to its excellent thermal and structural stability, low cost of starting materials, high reversibility of Li ion insertionextraction, and non-toxicity . However, its practical application has suffered from the inherently poor kinetic properties caused by the low electro...
متن کاملافزایش عملکرد سیکلی ماده کاتدی LiMn2O4 باتریهای یون- لیتیومی توسط نانو ساختارفسفاتی LiFePO4
In this paper, LiMn2O4 spinel cathode materials have been successfully synthesized by solid-state reaction. Surface of these particles modified by nanocoating of LiFePO4. Synthesized products were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Spectroscopy (EDX). The results of electrochemical tests showed that charge/discharge ca...
متن کاملAqueous synthesis of LiFePO4 with Fractal Granularity
Lithium iron phosphate (LiFePO4) electrodes with fractal granularity are reported. They were made from a starting material prepared in water by a low cost, easy and environmentally friendly hydrothermal method, thus avoiding the use of organic solvents. Our method leads to pure olivine phase, free of the impurities commonly found after other water-based syntheses. The fractal structures consist...
متن کامل